Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder – Forum

Date: 2013-01-28

Reference number: OPUSeJ 201301282446ASD

Links: http://www.nature.com/tp/journal/v3/n1/full/tp2012143a.html

Cover: http://www.opusej.org/library/unique-acyl-carnitine-profiles-are-potential-biomarkers-for-acquired-mitochondrial-disease-in-autism-spectrum-disorder-cover/

Title: Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder

Authors: Richard E Frye, Stepan Melnyk & Derrick F MacFabe

Moderator: N/A

Overview: N/A

Addendum: none

Erratum: Reference 30. should read: Mitochondrial Medicine Society’s Committee on Disease, Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008; 94: 16–37.


Al-Owain M, Kaya N, Al-Shamrani H, Al-Bakheet A, Qari A, Al-Muaigl S et al. Autism spectrum disorder in a child with propionic acidemia. JIMD Reports 2012; 7: 63–66. http://link.springer.com/chapter/10.1007%2F8904_2012_143

APA. Diagnostic and statistical manual of mental disorders 4th edn DC: American Psychiatric Association: Washington, 1994. http://allpsych.com/disorders/dsm.html

Ashwood P, Anthony A, Torrente F, Wakefield AJ. Spontaneous mucosal lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms: mucosal immune activation and reduced counter regulatory interleukin-10. J Clin Immunol 2004; 24: 664 73. http://www.ncbi.nlm.nih.gov/pubmed/15622451

Ashwood P, Van de Water J. Is autism an autoimmune disease? autoimmunity reviews. 2004; 3: 557–562. http://www.ncbi.nlm.nih.gov/pubmed/15546805

Ashwood P, Van de Water J. A review of autism and the immune response. Clin Dev Immunol 2004; 11: 165–174. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270714/

Bai RK, Perng CL, Hsu CH, Wong LJ. Quantitative PCR analysis of mitochondrial DNA content in patients with mitochondrial disease. Ann N Y Acad Sci 2004; 1011: 304–309. http://onlinelibrary.wiley.com/doi/10.1196/annals.1293.029/abstract

Bai RK, Wong LJ. Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over-replication in patients with mitochondrial disease. J Mol Diagn 2005; 7: 613–622. http://www.ncbi.nlm.nih.gov/pubmed/15126306?dopt=Abstract&holding=npg

Barollo M, Medici V, D’Inca R, Banerjee A, Ingravallo G, Scarpa M et al. Antioxidative potential of a combined therapy of anti TNFalpha and Zn acetate in experimental colitis. World J Gastroenterol 2011; 17: 4099–4103. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203360/

Barton LL, Fauque GD. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 2009; 68: 41–98.Calabrese V, Rizza V. Formation of propionate after short-term ethanol treatment and its interaction with the carnitine pool in rat. Alcohol 1999; 19: 169–176. http://www.ncbi.nlm.nih.gov/pubmed/19426853?dopt=Abstract&holding=npg

Brass EP. Interaction of carnitine and propionate with pyruvate oxidation by hepatocytes from clofibrate-treated rats: importance of coenzyme A availability. J Nutr 1992; 122: 234–240. http://www.ncbi.nlm.nih.gov/pubmed/1732464?dopt=Abstract&holding=npg

Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG et al. Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 2002; 40: 593–601. http://www.ncbi.nlm.nih.gov/pubmed/11900854?dopt=Abstract&holding=npg

Calabrese V, Rizza V. Formation of propionate after short-term ethanol treatment and its interaction with the carnitine pool in rat. Alcohol 1999; 19: 169–176. http://www.alcoholjournal.org/article/S0741-8329(99)00036-1/abstract

Celestino-Soper PB, Violante S, Crawford EL, Luo R, Lionel AC, Delaby E et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc Nat Acad Sci USA 2012; 109: 7974–7981. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361440/

Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, DiMauro S et al. Mitochondrial dysfunction in mut methylmalonic acidemia. The FASEB Journal 2009; 23: 1252–1261.Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology 2006; 13: 171–181. http://www.fasebj.org/content/23/4/1252

Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology 2006; 13: 171–181. http://www.ncbi.nlm.nih.gov/pubmed/16766163?dopt=Abstract&holding=npg

Clark-Taylor T, Clark-Taylor BE. Is autism a disorder of fatty acid metabolism? possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase. Med Hypotheses 2004; 62: 970–975. http://www.medical-hypotheses.com/article/S0306-9877(04)00081-7/abstract

Conn AR, Fell DI, Steele RD. Characterization of alpha-keto acid transport across blood-brain barrier in rats. Am J Physiol 1983; 245: E253–E260. http://www.ncbi.nlm.nih.gov/pubmed/6614164?dopt=Abstract&holding=npg

Corydon MJ, Vockley J, Rinaldo P, Rhead WJ, Kjeldsen M, Winter V et al. Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 2001; 49: 18–23. http://www.ncbi.nlm.nih.gov/pubmed/11134486?dopt=Abstract&holding=npg

Coulter DL. Carnitine, valproate, and toxicity. J Child Neurol 1991; 6: 7–14. http://jcn.sagepub.com/content/6/1/7

DeCastro M, Nankova BB, Shah P, Patel P, Mally PV, Mishra R et al. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res Mol Brain Res 2005; 142: 28–38. http://www.ncbi.nlm.nih.gov/pubmed/16219387?dopt=Abstract&holding=npg

Faber S, Zinn GM, Kern JC, Kingston HM. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers 2009; 14: 171–180. http://www.ncbi.nlm.nih.gov/pubmed/19280374?dopt=Abstract&holding=npg

Fallon J. Could one of the most widely prescribed antibiotics amoxicillin/clavulanate “augmentin” be a risk factor for autism? Med Hypotheses 2005; 64: 312–315. http://www.ncbi.nlm.nih.gov/pubmed/15607562?dopt=Abstract&holding=npg

Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010; 16: 444–453. http://www.sciencedirect.com/science/article/pii/S1075996410001010

Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E et al. Gastrointestinal microflora studies in late-onset autism. Clin infect Dis 2002; 35(Suppl 1): S6–S16. http://cid.oxfordjournals.org/content/35/Supplement_1/S6

Fortin G, Yurchenko K, Collette C, Rubio M, Villani AC, Bitton A et al. L-carnitine, a diet component and organic cation transporter OCTN ligand, displays immunosuppressive properties and abrogates intestinal inflammation. Clin Exp Immunol 2009; 156: 161–171. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673754/

Frye RE. Novel cytochrome b gene mutations causing mitochondrial disease in autism. J Ped Neurol 2012; 10: 1–6. http://iospress.metapress.com/content/d14471vn316g4352/

Frye RE. Biomarkers of abnormal energy metabolism in children with autism spectrum disorder. NAJ Med Sci 2012; 5: 141–147. http://najms.net/wp-content/upload/v5i3p141.pdf

Frye RE, Naviaux RK. Autistic disorder with complex IV overactivity: a new mitochondrial syndrome. J Ped Neurol 2011; 9: 427–434. http://iospress.metapress.com/content/x0388m17436484v8/

Frye RE, Rossignol DA. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res 2011; 69(5 Pt 2): 41R–47RR. http://www.nature.com/pr/journal/v69/n5-2/full/pr9201192a.html

Geier DA, Kern JK, Davis G, King PG, Adams JB, Young JL et al. A prospective double-blind, randomized clinical trial of levocarnitine to treat autism spectrum disorders. Med Sci Monit 2011; 17: PI15–PI23. http://www.ncbi.nlm.nih.gov/pubmed/21629200?dopt=Abstract&holding=npg

Gil Borlado MC, Moreno Lastres D, Gonzalez Hoyuela M, Moran M, Blazquez A, Pello R et al. Impact of the mitochondrial genetic background in complex III deficiency. PLoS ONE 2010; 5: e12801. http://www.ncbi.nlm.nih.gov/pubmed/20862300?dopt=Abstract&holding=npg

Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I et al. Mitochondrial dysfunction in autism. JAMA 2010; 304: 2389–2396. http://jama.jamanetwork.com/article.aspx?articleid=186999#qundefined

Graf WD, Marin-Garcia J, Gao HG, Pizzo S, Naviaux RK, Markusic D et al. Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation. J Child Neurol 2000; 15: 357–361. http://www.ncbi.nlm.nih.gov/pubmed/10868777?dopt=Abstract&holding=npg

Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N et al. (Mitochondrial Medicine Society’s Committee on Diagnosis), The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008; 94: 16–37. http://www.sciencedirect.com/science/article/pii/S1096719207006117

Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011; 68: 1095–1102. http://archpsyc.jamanetwork.com/article.aspx?articleid=1107328#qundefined

Hara H, Haga S, Aoyama Y, Kiriyama S. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 1999; 129: 942–948. http://www.ncbi.nlm.nih.gov/pubmed/10222383?dopt=Abstract&holding=npg

Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG et al. Autism and environmental genomics. Neurotoxicology 2006; 27: 671–684. http://www.sciencedirect.com/science/article/pii/S0161813X06000945

Iwaya H, Kashiwaya M, Shinoki A, Lee JS, Hayashi K, Hara H et al. Marginal zinc deficiency exacerbates experimental colitis induced by dextran sulfate sodium in rats. J Nutr 2011; 141: 1077–1082. http://www.ncbi.nlm.nih.gov/pubmed/21525261?dopt=Abstract&holding=npg

James SJ, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 2009; 89: 425–430. http://www.ncbi.nlm.nih.gov/pubmed/19056591?dopt=Abstract&holding=npg

James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B, Neuropsychiatr Genet 2006; 141B: 947–956. http://www.ncbi.nlm.nih.gov/pubmed/16917939

Kirby DM, Thorburn DR, Turnbull DM, Taylor RW. Biochemical assays of respiratory chain complex activity. Methods Cell Biol 2007; 80: 93–119. http://www.ncbi.nlm.nih.gov/pubmed/17445690?dopt=Abstract&holding=npg

Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F. Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta 2010; 1797: 1500–1511. http://www.ncbi.nlm.nih.gov/pubmed/20398623?dopt=Abstract&holding=npg

Le Poul E, Loison C, Struyf S. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278: 25481–25489. http://www.ncbi.nlm.nih.gov/pubmed/12711604?dopt=Abstract&holding=npg

MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 2012; 23: 19260. http://www.microbecolhealthdis.net/index.php/mehd/article/view/19260

MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 2011; 217: 47–54. http://www.sciencedirect.com/science/article/pii/S0166432810006777

MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin AE, Hoffman JE, Boon F et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 2007; 176: 149–169. http://www.sciencedirect.com/science/article/pii/S0166432806004165

MacFabe DF, Rodríguez-Capote K, Hoffman JE. A novel rodent model of autism: intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am J Biochem Biotechnol 2008; 4: 146–166. http://thescipub.com/abstract/10.3844/ajbbsp.2008.146.166

Mellon AF, Deshpande SA, Mathers JC, Bartlett K. Effect of oral antibiotics on intestinal production of propionic acid. Arch Dis Child 2000; 82: 169–172. http://www.ncbi.nlm.nih.gov/pubmed/10648377?dopt=Abstract&holding=npg

Melnyk S, Pogribna M, Pogribny I, Hine RJ, James SJ. A new HPLC method for the simultaneous determination of oxidized and reduced plasma aminothiols using coulometric electrochemical detection. J Nutr Biochem 1999; 10: 490–497. http://www.ncbi.nlm.nih.gov/pubmed/15539328?dopt=Abstract&holding=npg

Miecz D, Januszewicz E, Czeredys M, Hinton BT, Berezowski V, Cecchelli R et al. Localization of organic cation/carnitine transporter (OCTN2) in cells forming the blood-brain barrier. J Neurochem 2008; 104: 113–123. http://www.ncbi.nlm.nih.gov/pubmed/17995936?dopt=Abstract&holding=npg

Morava E, van den Heuvel L, Hol F, de Vries MC, Hogeveen M, Rodenburg RJ et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology 2006; 67: 1823–1826. http://www.ncbi.nlm.nih.gov/pubmed/17130416?dopt=Abstract&holding=npg

Mostafa GA, El-Gamal HA, El-Wakkad ASE, El-Shorbagy OE, Hamza MM. Polyunsaturated fatty acids, carnitine and lactate as biological markers of brain energy in autistic children. Int J Child Neuropsychiatry 2005; 2: 179–188. http://www.cnp.org.eg/issue3/0313.pdf

Munnich A, Rustin P. Clinical spectrum and diagnosis of mitochondrial disorders. Am J Med Genet 2001; 106: 4–17. http://www.ncbi.nlm.nih.gov/pubmed/11579420?dopt=Abstract&holding=npg

Nakao S, Moriya Y, Furuyama S, Niederman R, Sugiya H. Propionic acid stimulates superoxide generation in human neutrophils. Cell Biol Int 1998; 22: 331–337. http://www.ncbi.nlm.nih.gov/pubmed/10198152?dopt=Abstract&holding=npg

Nguyen NH, Morland C, Gonzalez SV, Rise F, Storm-Mathisen J, Gundersen V et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia. J Neurochem 2007; 101: 806–814. http://www.ncbi.nlm.nih.gov/pubmed/17286595?dopt=Abstract&holding=npg

Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Khine Su-Myat K et al. Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fatty Acids 2009; 81: 253–264. http://www.plefa.com/article/S0952-3278(09)00111-2/abstract

Patel SP, Sullivan PG, Lyttle TS, Rabchevsky AG. Acetyl-l-carnitine ameliorates mitochondrial dysfunction following contusion spinal cord injury. J Neurochem 2010; 114: 291–301. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897952/

Perez B, Desviat LR, Rodriguez-Pombo P, Clavero S, Navarrete R, Perez-Cerda C et al. Propionic acidemia: identification of twenty-four novel mutations in Europe and North America. Mol Genet Metab 2003; 78: 59–67. http://www.ncbi.nlm.nih.gov/pubmed/12559849?dopt=Abstract&holding=npg

Pettenuzzo LF, Ferreira Gda C, Schmidt AL, Dutra-Filho CS, Wyse AT, Wajner M. Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. International J Dev Neurosci 2006; 24: 45–52. http://www.sciencedirect.com/science/article/pii/S0736574805001292

Roe CR, Roe DS. Recent developments in the investigation of inherited metabolic disorders using cultured human cells. Mol Genet Metab 1999; 68: 243–257. http://www.ncbi.nlm.nih.gov/pubmed/10527676?dopt=Abstract&holding=npg

Rorig B, Klausa G, Sutor B. Intracellular acidification reduced gap junction coupling between immature rat neocortical pyramidal neurones. J Physiol 1996; 490(Pt 1): 31–49. http://www.ncbi.nlm.nih.gov/pubmed/8745277?dopt=Abstract&holding=npg

Rossignol DA. Novel and emerging treatments for autism spectrum disorders: a systematic review. Ann Clin Psychiatr 2009; 21: 213–236. http://www.ncbi.nlm.nih.gov/pubmed/19917212

Rossignol D, Frye RE. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol Psychiatry 2012; 17: 290–314. http://www.nature.com/mp/journal/v17/n3/full/mp2010136a.html

Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 2012; 17: 389–401. http://www.nature.com/mp/journal/v17/n4/full/mp2011165a.html

Russo AJ, Devito R. Analysis of copper and zinc plasma concentration and the efficacy of zinc therapy in individuals with asperger’s syndrome, pervasive developmental disorder not otherwise specified (PDD-NOS) and autism. Biomark Insights 2011; 6: 127–133. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235993/

Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Vaisanen ML et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000; 15: 429–435. http://www.ncbi.nlm.nih.gov/pubmed/10921511?dopt=Abstract&holding=npg

Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G. Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev Neurosci 2010; 32: 480–487. http://www.ncbi.nlm.nih.gov/pubmed/21228558?dopt=Abstract&holding=npg

Schwab MA, Sauer SW, Okun JG, Nijtmans LG, Rodenburg RJ, van den Heuvel LP et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J 2006; 398: 107–112. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1525008/

Scrimgeour AG, Condlin ML. Zinc and micronutrient combinations to combat gastrointestinal inflammation. Curr Opin Clin Nutr Metab Care 2009; 12: 653–660. http://www.ncbi.nlm.nih.gov/pubmed/19684516?dopt=Abstract&holding=npg

Shultz SR, Macfabe DF, Martin S, Jackson J, Taylor R, Boon F et al. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behav Brain Res 2009; 200: 33–41. http://www.sciencedirect.com/science/article/pii/S0166432808007274

Shultz SR, MacFabe DF, Ossenkopp KP, Scratch S, Whelan J, Taylor R et al. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: implications for an animal model of autism. Neuropharmacology 2008; 54: 901–911. http://www.sciencedirect.com/science/article/pii/S002839080800035X

Sikora SK, Spady D, Prosser C, El-Matary W. Trace elements and vitamins at diagnosis in pediatric-onset inflammatory bowel disease. Clin Pediatr 2011; 50: 488–492. http://cpj.sagepub.com/content/50/6/488

Thomas RH, Foley KA, Mepham JR, Tichenoff LJ, Possmayer F, MacFabe DF. Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: further development of a potential model of autism spectrum disorders. J Neurochem 2010; 113: 515–529. http://onlinelibrary.wiley.com/doi/10.1111/j.1471-4159.2010.06614.x/abstract;jsessionid=10CA791B9C6ACC2922DA883F05C20B7B.d04t01

Thomas RH, Meeking MM, Mepham JR, Tichenoff L, Possmayer F, Liu S et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation 2012; 9: 153. http://www.jneuroinflammation.com/content/9/1/153

Tran CD, Ball JM, Sundar S, Coyle P, Howarth GS. The role of zinc and metallothionein in the dextran sulfate sodium-induced colitis mouse model. Dig Dis Sci 2007; 52: 2113–2121. http://www.ncbi.nlm.nih.gov/pubmed/17410436?dopt=Abstract&holding=npg

Wajner M, Latini A, Wyse AT, Dutra-Filho CS. The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 2004; 27: 427–448. http://link.springer.com/article/10.1023%2FB%3ABOLI.0000037353.13085.e2

Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 2012; 57: 2096–2102. http://www.ncbi.nlm.nih.gov/pubmed/22535281?dopt=Abstract&holding=npg

Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E et al. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010; 119: 755–770. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869041/

Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE 2008; 3: e3815. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003815

Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 2011; 6: e24585. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174969/

Wong LJ. Pathogenic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 2007; 36: 279–293. http://www.ncbi.nlm.nih.gov/pubmed/17503499?dopt=Abstract&holding=npg

Wong LJ, Cobb BR, Chen TJ. Molecular analysis of mitochondrial DNA point mutations by polymerase chain reaction. Methods Mol Biol 2006; 336: 135–143. http://www.ncbi.nlm.nih.gov/pubmed/16916259?dopt=Abstract&holding=npg

Yasuda H, Yoshida K, Yasuda Y, Tsutsui T. Infantile zinc deficiency: association with autism spectrum disorders. Scientific reports. 2011; 1: 129. http://www.nature.com/srep/2011/111103/srep00129/full/srep00129.html

Yorifuji T, Kawai M, Muroi J, Mamada M, Kurokawa K, Shigematsu Y et al. Unexpectedly high prevalence of the mild form of propionic acidemia in Japan: presence of a common mutation and possible clinical implications. Hum Genet 2002; 111: 161–165. http://www.ncbi.nlm.nih.gov/pubmed/10648377?dopt=Abstract&holding=npg

Zhang Y, Okamura S, Kudo T, Masuo T, Mori M. Calcineurin inhibition by polaprezinc in rats with experimentally-induced colitis. Life Sci 2011; 88: 432–439. http://www.ncbi.nlm.nih.gov/pubmed/21219912?dopt=Abstract&holding=npg

Citation: Frye, R E, S Melnyk & D F MacFabe, 2013, “Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder”, Translational Psychiatry (2013) 3, e220; Published online 22 January 201. doi:10.1038/tp.2012.143. http://www.nature.com/tp/journal/v3/n1/full/tp2012143a.html

Academic citations forward: none

Other citations forward:

1) Pedro, Kelly, 2013-01-28, “Researchers discover link between certain types of autism and gut bacteria”, London Free Press, London, Ontario, Canada. http://www.lfpress.com/2013/01/28/researchers-discover-link-between-certain-types-of-autism-and-gut-bacteria

2) Western News, 2013-01-28, “International research team discover potential blood test for autistic patients” http://communications.uwo.ca/com/media_newsroom/media_newsroom_stories/international_research_team_discover_potential_blood_test_for_autistic_patients_20130128447931/

Leave a Reply