Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use – Forum

Date: 2013-02-06

Reference number: OPUSeJ 201302062236FRS

Links: to published article: http://www.ncbi.nlm.nih.gov/pubmed/23255194

to pre-reviewed version: N/A

to cover page: http://www.opusej.org/library/real-time-measurement-of-metabolic-rate-during-freezing-and-thawing-of-the-wood-frog-rana-sylvatica-implications-for-overwinter-energy-use-cover/

Title: Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use

Authors:  Sinclair BJ, Stinziano JR, Williams CM, Macmillan HA, Marshall KE, Storey KB.

Moderator: N/A

Overview: N/A

Addendum: none

Erratum: none

Bibliography:

Baldwin, R. F., Calhoun, A. J. K. and deMaynadier, P. G. (2006). Conservation planning for amphibian species with complex habitat requirements: a case study using movements and habitat selection of the wood frog Rana sylvatica. J. Herpetol. 40, 442-453.

Costanzo, J. P., Lee, R. E., Jr and Lortz, P. H. (1993). Physiological responses of freeze-tolerant and -intolerant frogs: clues to evolution of anuran freeze tolerance. Am. J. Physiol. 265, R721 R725.

Costanzo, J. P., Grenot, C. and Lee, R. E., Jr (1995). Supercooling, ice inoculation and freeze tolerance in the European common lizard, Lacerta vivipara. J. Comp. Physiol. B 165, 238-244.

Costanzo, J. P., Callahan, P. A., Lee, R. E., Jr and Wright, M. F. (1997). Frogs reabsorb glucose from urinary bladder. Nature 389, 343-344.

Feder, M. E. and Burggren, W. W. (1992). Environmental Physiology of the Amphibians. Chicago, IL: University of Chicago Press.

Fitzpatrick, L. C. (1976). Life-history patterns of storage and utilization of lipids for energy in amphibians. Am. Zool. 16, 725-732.

Guglielmo, C. G., McGuire, L. P., Gerson, A. R. and Seewagen, C. L. (2011). Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75-85.

Hansen, L. L., Westh, P., Wright, J. C. and Ramløv, H. (2006). Metabolic changes associated with active water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae): a microcalorimetric study. J. Insect Physiol. 52, 291-299.

Henry, H. A. L. (2008). Climate change and soil freezing dynamics: historical trends and projected changes. Clim. Change 87, 421-434.

Hertz, P. E. (1992). Temperature regulation in Puerto Rican Anolis lizards – a field test using null hypotheses. Ecology 73, 1405-1417.

Hochachka, P. W. and Somero, G. N. (2002). Biochemical Adaptation. New York, NY: Oxford University Press.

Holmstrup, M., Costanzo, J. P. and Lee, R. E., Jr (1999). Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freezeintolerant earthworms. J. Comp. Physiol. B 169, 207-214.

Hui, W., Gel, Y. R. and Gastwirth, J. L. (2008). lawstat: an R package for law, public policy and biostatistics. J. Stat. Softw. 28, 1-26.

Humphries, M. M., Thomas, D. W. and Speakman, J. R. (2002). Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313-316.

Irwin, J. T. and Lee, R. E., Jr (2000). Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). J. Insect Physiol. 46, 655-661.

Irwin, J. T. and Lee, R. E., Jr (2002). Energy and water conservation in frozen vs. supercooled larvae of the goldenrod gall fly, Eurosta solidaginis (Fitch) (Diptera: Tephritidae). J. Exp. Zool. 292, 345-350.

Irwin, J. T., Costanzo, J. P. and Lee, R. E., Jr (2003). Postfreeze reduction of locomotor endurance in the freeze-tolerant wood frog, Rana sylvatica. Physiol. Biochem. Zool. 76, 331-338.

Layne, J. R., Jr (2000). Postfreeze O2 consumption in the wood frog (Rana sylvatica). Copeia 2000, 879-882.

Layne, J. R., Jr and First, M. C. (1991). Resumption of physiological functions in the wood frog (Rana sylvatica) after freezing. Am. J. Physiol. 261, R134-R137.

Layne, J. R., Jr and Kefauver, J. (1997). Freeze tolerance and postfreeze recovery in the frog Pseudacris crucifer. Copeia 1997, 260-264.

Layne, J. R., Jr and Lee, R. E., Jr (1995). Adaptations of frogs to survive freezing. Clim. Res. 5, 53-59.

Layne, J. R., Jr and Rice, M. E. (2003). Postfreeze locomotion performance in wood frogs (Rana sylvatica) and spring peepers (Pseudacris crucifer). Can. J. Zool. 81, 2061-2065.

Layne, J. R., Jr, Lee, R. E., Jr and Heil, T. L. (1989). Freezing-induced changes in the heart rate of wood frogs (Rana sylvatica). Am. J. Physiol. 257, R1046-R1049.

Lee, R. E., Jr and Costanzo, J. P. (1998). Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu. Rev. Physiol. 60, 55-72.

Lee, R. E., Jr, Costanzo, J. P., Davidson, E. C. and Layne, J. R., Jr (1992). Dynamics of body water during freezing and thawing in a freeze-tolerant frog (Rana sylvatica). J. Therm. Biol. 17, 263-266.

Lighton, J. R. B. and Turner, R. J. (2004). Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus. J. Exp. Biol. 207, 1903-1913.

Long, D. R. (1987). A comparison of energy substrates and reproductive patterns of two anurans. Acris crepitans and Bufo woodhousei. Comp. Biochem. Physiol. 87A, 81-91.

MacMillan, H. A., Williams, C. M., Staples, J. F. and Sinclair, B. J. (2012). Metabolism and energy supply below the critical thermal minimum of a chillsusceptible insect. J. Exp. Biol. 215, 1366-1372.

Marshall, K. E. and Sinclair, B. J. (2012). Threshold temperatures mediate the impact of reduced snow cover on overwintering freeze-tolerant caterpillars. Naturwissenschaften 99, 33-41.

McLister, J. D. (2003). The metabolic cost of amplexus in the grey tree frog (Hyla versicolor): assessing the energetics of male mating success. Can. J. Zool. 81, 388-394.

Muir, T. J., Costanzo, J. P. and Lee, R. E., Jr (2008). Metabolic depression induced by urea in organs of the wood frog, Rana sylvatica: effects of season and temperature. J. Exp. Zool. A 309, 111-116.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Rausch, C. M., Starkweather, P. L. and van Breukelen, F. (2008). One year in the life of Bufo punctatus: annual patterns of body temperature in a free-ranging desert anuran. Naturwissenschaften 95, 531-535.

Regosin, J. V., Windmiller, B. S. and Reed, J. M. (2003). Terrestrial habitat use and winter densities of the wood frog (Rana sylvatica). J. Herpetol. 37, 390-394.

Rexer-Huber, K. M. J., Bishop, P. J. and Wharton, D. A. (2011). Skin ice nucleators and glycerol in the freezing-tolerant frog Litoria ewingii. J. Comp. Physiol. B 181, 781-792.

Ruel, J. J. and Ayres, M. P. (1999). Jensenʼs inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361-366.

Sinclair, B. J. (2001). Biologically relevant environmental data: macros to make themost of microclimate recordings. Cryo Letters 22, 125-134.

Sinclair, B. J., Klok, C. J. and Chown, S. L. (2004). Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. J. Exp. Biol. 207, 1287-1294.

Sinclair, B. J., Bretman, A., Tregenza, T., Tomkins, J. L. and Hosken, D. J. (2011). Metabolic rate does not decrease with starvation in Gryllus bimaculatus when changing fuel use is taken into account. Physiol. Entomol. 36, 84-89.

Storey, J. M. and Storey, K. B. (1985). Triggering of cryoprotectant synthesis by the initiation of ice nucleation in the freeze tolerant frog, Rana sylvatica. J. Comp. Physiol. B 156, 191-195.

Storey, K. B. (2004). Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48, 134-145.

Storey, K. B. (2008). Beyond gene chips: transcription factor profiling in freeze tolerance. In Hypometabolism in Animals: Hibernation, Torpor and Cryobiology (ed. B. G. Lovegrove and A. E. McKechnie), pp. 101-108. Pietermaritzburg, South Africa: Interpak Books

Storey, K. B. and Storey, J. M. (1984). Biochemical adaptation for freezing tolerance in the wood frog, Rana sylvatica. J. Comp. Physiol. B 155, 29-36.

Storey, K. B. and Storey, J. M. (1986). Freeze tolerant frogs: cryoprotectants and tissue metabolism during freeze–thaw cycles. Can. J. Zool. 64, 49-56.

Storey, K. B. and Storey, J. M. (1987). Persistence of freeze tolerance in terrestrially hibernating frogs after spring emergence. Copeia 1987, 720-726.

Storey, K. B. and Storey, J. M. (1992). Natural freeze tolerance in ectothermic vertebrates. Annu. Rev. Physiol. 54, 619-637.

Storey, K. B. and Storey, J. M. (1996). Natural freezing survival in animals. Annu. Rev. Ecol. Syst. 27, 365-386.

Tattersall, G. J. and Ultsch, G. R. (2008). Physiological ecology of aquatic overwintering in ranid frogs. Biol. Rev. Camb. Philos. Soc. 83, 119-140.

Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V. and Nilius, B. (2004). The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748-754.

Voituron, Y., Verdier, B. and Grenot, C. (2002a). The respiratory metabolism of a lizard (Lacerta vivipara) in supercooled and frozen states. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R181-R186.

Voituron, Y., Mouquet, N., de Mazancourt, C. and Clobert, J. (2002b). To freeze or not to freeze? An evolutionary perspective on the cold-hardiness strategies of overwintering ectotherms. Am. Nat. 160, 255-270.

Voituron, Y., Paaschburg, L., Holmstrup, M., Barré, H. and Ramløv, H. (2009). Survival and metabolism of Rana arvalis during freezing. J. Comp. Physiol. B 179, 223-230.

Williams, C. M., Marshall, K. E., MacMillan, H. A., Dzurisin, J. D. K., Hellmann, J. J. and Sinclair, B. J. (2012a). Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly. PLoS ONE 7, e34470.

Williams, C. M., Hellmann, J. J. and Sinclair, B. J. (2012b). Lepidopteran species differ in susceptibility to winter warming. Clim. Res. 53, 119-130.

Withers, P. C. (1992). Comparative Animal Physiology. Fort Worth, TX: Saunders College Publishing.

Wolanczyk, J. P., Storey, K. B. and Baust, J. G. (1990). Ice nucleating activity in the blood of the freeze-tolerant frog, Rana sylvatica. Cryobiology 27, 328-335.

Zachariassen, K. E. (1985). Physiology of cold tolerance in insects. Physiol. Rev. 65, 799-832.

Zhang, J. and Storey, K. B. (2012). Cell cycle regulation in the freeze tolerant wood frog, Rana sylvatica. Cell Cycle 11, 1727-1742.

Citation: Sinclair BJ et al, 2013, “Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use”, J Exp Biol. 2013 Jan 15;216(Pt 2):292-302. doi: 10.1242/jeb.076331. http://www.ncbi.nlm.nih.gov/pubmed/23255194

Academic citations forward: none

Other citations forward:

1)      Kathryn Knight, K, 2013, “FREEZING COSTS FROGS DEAR” J Exp Biol 216, iii. January 15, 2013 doi: 10.1242/jeb.083733 http://jeb.biologists.org/content/216/2/iii.short

Leave a Reply